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Abstract
Pricing of access to energy networks is an important issue in liberalized energy sectors
because of the natural monopoly character of the underlying transport infrastructures.
We introduce a general pricing framework for potential-based energy flows in arbi-
trarily structured transport networks. In different specifications of our general pricing
model we discuss first- and second-best pricing results and compare different pric-
ing outcomes of potential-free and potential-based energy flow models. Our results
show that considering nonlinear laws of physics leads to significantly different pricing
results on networks and that these differences can only be seen in sufficiently complex,
e.g., cyclic, networks as they can be found in real-world situations.

Keywords Energy networks · Pricing · Gas networks · Electricity networks

JEL Classification C61 · L94 · L95

1 Introduction

Most industrialized countries have liberalized their energy sectors in the last decades.
As opposed to trading, which takes place at competitive markets, energy transport
networks still have the character of natural monopolies. This is the reason why certain
regulation rules have to be imposed for network access. Thus, an important topic is
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the pricing of network access, which should reflect the costs of transportation and
additional costs arising from investment in capacity expansion of the network.

The economic situation is similar for different types of energy like electricity or
natural gas. In most countries with liberalized energy sectors, supply and demand
is traded on markets and the resulting quantities have to be transported through the
corresponding networks. The laws of physics that govern the energy flow through
these networks differ but have some mathematical commonalities. However, many
publications on spatial energy economics abstract from these, often nonlinear, physics
models because they focus on other aspects like market power. The mentioned physics
models of energy flows are mainly determined by potential gradients, where potentials
are voltage angles, gas pressures, or hydraulic heads in electricity, gas, and water
networks, respectively. In this paper we discuss these generic physics models that can
be used to model energy flows in electricity, natural gas, and drinking water networks
and thus present a unified framework to discuss pricing issues for different types of
energy networks. We are aware that these sectors need different economic models on
top of the physical constraints that we, in this paper, embed into a very basic economic
modeling. In particular, we compare both an energy flow model that abstracts from
potentials with its potential-based counterpart and analyze the impact of physics on a
simple economic pricingmodel that is based ondual variables of the respective clearing
constraints. To the best of our knowledge, this is the first contribution addressing
these different network flow models in an integrated pricing framework. Thus, our
contribution is to present and discuss the general effects of potential-based physics
models on pricing—without considering the effects that arise due to specific economic
modeling for the mentioned energy sectors like electricity or natural gas.

There are several specifications of pricing models in the literature of energy eco-
nomics. In the present paper, we consider first- and second-best pricing frameworks.
Here, the first- and second-best pricing model differ in the fact whether a break-even
constraint for the transport operator (TO) is incorporated or not. The investigation
of both models and their differences is of special importance in networks like, e.g.,
gas networks, where short-run costs (mainly arising from operating gas compressors)
only represent a small amount of the overall costs. In such a case, the consideration
of second-best pricing is necessary in order to cover short-run network operation and
long-run investment costs.

There exists exhaustive literature on access pricing for energy networks, especially
for electricity and gas networks. Examples for studies of access pricing for natural gas
networks include, e.g., Cremer andLaffont (2002), Cremer et al. (2003), orMeran et al.
(2010). They discuss pricing issues in perfectly competitive gas markets and the case
of market power. Lochner (2011) studies the valuation of gas transport infrastructures
and the identification of congestion in the European gas market. As the previous
mentioned papers, it uses potential-free gas flow models. The presented case studies
are based on networks with no more than three nodes. Additionally, studies of specific
real-world gas pipelines, i.e., two-node networks, are given in the literature; see, e.g.,
Micola and Bunn (2007). Other examples for gas market studies using potential-free
models on two- or three-node networks include, e.g., Gasmi and Oviedo (2010) and
Rosendahl and Sagen (2009). For contributions with an economic focus that also
consider pressure loss constraints see, e.g., Midthun et al. (2009), where an economic
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dispatch pricing of natural gas is considered orMidthun et al. (2015), where a capacity
investment model for natural gas is discussed. Multilevel equilibrium models for gas
markets with nonlinear physics models can also be found in Grimm et al. (2018),
(2019a). We also refer to the latter of the last two papers for a more detailed review
of the relevant literature on gas markets.

There also exist many contributions regarding electricity networks. The majority
of studies are based on DC power flowmodels, in which node potentials are taken into
account; see, e.g., Cardell et al. (1997), Chao and Peck (1996, 1998), Deng and Oren
(2001), Hogan (1992, 1997), Joskow (1997), Léautier (2001) and Schweppe et al.
(1988); to name only a few.

Let us also mention that access pricing to networks is not restricted to energy
networks; see, e.g., Laffont and Tirole (1994) for access pricing to telecommunication
and railway networks, which also exhibit a natural monopoly character.

Finally, second-best pricing is used inmany studies about naturalmonopolies like in
transportation (Arnott and Yan 2000; Verhoef 2002; Winston 1985), water (Johansson
et al. 2002; Spulber and Sabbaghi 2012), or electricity networks (Joskow 2008).

In the context of this literature, our contributions are the following:

(1) We state general first- and second-best pricing frameworks on arbitrary networks.
(2) We compare pricing models that abstract from potential laws with models that

incorporate (possibly) nonlinear and thus nonconvex potential-based energy flows.
(3) A specific instantiation of our models that neglects transportation costs is analyzed

both for the potential-free and the potential-based model and the existence of price
zones for the former case is proven using first-order optimality conditions of an
alternative flow formulation.

Let us note that we are aware of the fact that we abstract frommany practically impor-
tant issues like, e.g., market power. We discuss the possible combination of economic
market power models with potential-based physics models later in the conclusion.

Our main results are the following: First, we discuss the properties of pricing for
potential-free energy flow models in transport networks. The main property is that
most of the results are local pricing rules, i.e., flow situations in some region of the
network do not influence the pricing in other regions. This is shown to be the case both
for first- and second-best pricing. Second,we show that this does not hold for potential-
based flow models in networks. Here, binding bounds on capacities or potentials have
a significant impact on pricing everywhere in the network, which is also true both for
first- and second-best pricing. The implications of these results are double-edged. On
the one hand, it shows that cost-reflective pricing seems to be a goal that is very hard
to reach if one considers potential-based flow models. On the other hand, the value of
capacity investments in potential-based energy flow models depends on the specific
flow situation. Thus, reasonable policy implications only seem to be possible if multi-
scenario settings are considered, which typically leads to much harder optimization
models to solve—in addition to the already complicating nonlinearities.

The paper is organized as follows. Section 2 collects the notation required through-
out the paper. Afterward, Sect. 3 analyzes first- and second-best pricing outcomes on
networks for the case of potential-free flow models and Sect. 4 then discusses the
results for the potential-based counterparts. Section 5 analyzes the case without trans-
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portation costs on arcs both for the potential-free and potential-based case. In Sect. 6
we present a specific example to illustrate the effects of potential-based flows and
discuss the differences with respect to the potential-free counterparts. Finally, Sect. 7
summarizes and states some topics for future research.

2 Technical and economical setup

We consider energy transport networks that we model using directed graphs G =
(V , A) with node set V and arc set A. For what follows, we assume that all graphs are
connected. Nodes are denoted by u, v ∈ V and correspond to points in the network
where supply su ≥ 0 and demand du ≥ 0 is located. Supply costs are modeled by
strictly convex functions cop,u = cop,u(su). These costs are assumed to be nonnegative
and strictly increasing, i.e., cop,u ≥ 0, c′

op,u > 0. Demand is modeled by inverse
demand functions pu = pu(du) that satisfy the following assumptions: Their price-
intercept is positive, i.e., pu(0) > 0, and they are strictly decreasing, i.e., p′

u < 0.
Elasticity of supply and demand at node u ∈ V is denoted by Es

u or E
d
u , respectively.

Flows on arcs a ∈ A are denoted by qa . They can be positive or negative, yielding,
together with the direction of the arcs a = (u, v) ∈ A, the direction of flow: Positive
flow qa > 0 indicates flow from u to v whereas negative flow qa < 0 indicates reverse
flow from v to u. Additionally, we make use of the standard δ-notation, i.e., δin(u) and
δout(u) are the sets of in- and outgoing arcs of node u: δin(u) := {a ∈ A : a = (v, u)},
δout(u) := {a ∈ A : a = (u, v)}.

Depending on the specific model under consideration, arc flows are limited by
two different types of constraints. In simple linear models, they are restricted by
capacities Ka > 0, i.e., −Ka ≤ qa ≤ Ka for all a ∈ A. In more accurate models, arc
flows are coupled to node potentials �u, u ∈ V , and are governed by specific laws of
physics. In this case, we use the generic relation

�v = �u − Wa(Ka) f (qa). (1)

Here, f is a possibly nonlinear flow function and Wa is a potential loss function that
depends on a specific type of capacity; see below. Throughout the paper, we make the
following assumptions: Wa is positive and strictly decreasing, i.e., Wa > 0,W ′

a < 0.
The flow functions are strictly increasing, i.e., f ′ > 0 and have the same sign as the
flow itself, i.e., sgn( f (qa)) = sgn(qa).

In order to demonstrate the generality of Equation (1), we discuss the cases of gas,
water, and electricity transport networks; see also Groß et al. (2019). For modeling
gas flow through pipeline systems, one often uses a quadratic approximation of the
relation between node potentials and flows on arcs. In this case, the potentials are
squares of gas pressures and the flows are gas mass flows. The flow function is given
by f (qa) = |qa |qa and the pressure loss term is defined as

Wa :=
(
4

π

)2
κa

Da
5
, (2)
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where κa > 0 summarizes some physical and technical parameters like the friction at
the inner pipe wall and Da is the diameter of the pipe. The latter is the main design
parameter in gas pipeline systems and thus serves as the “capacity” Ka in this case.
For more information on modeling gas flow in pipelines, see Koch et al. (2015) and,
in particular, the chapter by Fügenschuh et al. (2015) therein.

In water networks, potentials correspond to hydraulic heads and the potential loss
is often modeled using the so-called Hazen–Williams equation, in which the flow
function is given by fa(qa) = sgn(qa)|qa |1.852 and the hydraulic loss term reads
Wa = κa/Da

4.87, where κa again summarizes some technical parameters of the pipe
and Da is its diameter. For more details on hydraulic head loss modeling in water
networks; see Larock et al. (2010). We are aware of the fact that fresh water is not
comparable from an economic perspective to gas or electricity that are often traded on
liberalizedmarkets. However, we also give this example here to illustrate the generality
of the potential-based model of flows in networks.

In order to satisfy the regularity assumption on f (e.g., the existence of the first
derivative), one often uses smoothings of the original nonsmooth flow functions; see
Burgschweiger et al. (2009) for water and Schmidt (2013); Schmidt et al. (2015, 2016)
as well as the references given above for modeling of gas flow in networks.

Electricity networks are often modeled using the so-called DC model, in which arc
flows correspond to power flows and node potentials are voltage angles; see, e.g., Chao
and Peck (1996, 1998), Joskow (1997), and Schweppe et al. (1988) for a discussion
in economic frameworks. Here, the flow function is simply given by f (qa) = qa and
the potential loss term is given by Wa = 1/Ba , where Ba > 0 is the susceptance of
the arc; see, e.g., Kirschen and Strbac (2004). In contrast, AC power flows do not fit
into our framework.

We finally note that our unified framework is not restricted to convex flow models.
For instance, the cases of gas and water transport networks lead to nonlinear and
nonconvex flow problems.

Arc capacity investment costs are denoted by cinv,a = cinv,a(Ka) and assumed to be
convex, nonnegative, and strictly increasing, i.e., cinv,a ≥ 0, c′

inv,a > 0. Furthermore,
convex transportation costs in dependence of flow is denoted by cop,a = cop,a(qa).
Here, we make the assumptions cop,a ≥ 0 and c′

op,a(qa)qa ≥ 0.
Finally, we fix some technical notation: Vectors are given by the corresponding

symbols without node or arc index, e.g., d := (du)u∈V ∈ R|V | denotes the vector of
all demands. For better reading, primal variables are always denoted by Roman letters
whereas dual variables are denoted by small Greek letters.

3 Pricing with potential-free network flowmodels

In this section we derive and state potential-free pricing models on general transport
networks. To this end, we start describing the optimization problems of the separate
players that act on the market. This leads to a generalized Nash equilibrium problem
(GNEP) on a network. Such GNEPs are often used for modeling strategic interaction
and usually possess infinitelymany solutions. Due to the latter multiplicities we follow
the approach to choose the specific solution that is also a variational equilibrium. This
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variational equilibrium can then be computed by a mixed complementarity problem
(MCPs) if the convexity assumptions hold as stated in Sect. 2. By doing so, we also
obtain a model of a perfectly competitive market. MCPs have become the standard
mathematical tool for modeling equilibria in liberalized energy markets; see, e.g., the
book Gabriel et al. (2012) and the many references therein. Moreover, these MCPs are
known to be equivalent to a singlewelfare optimization problem formodels of perfectly
competitive markets. Thus, the variational GNEP solutions can also be analyzed by
studying the corresponding welfare optimization problem. This is exactly what we
do to analyze the resulting pricing mechanisms. Moreover, we extend this welfare
optimization problemby a break-even constraint in order tomodel second-best pricing.
The special case without transportation costs on arcs is discussed later in Sect. 5.1.

3.1 First-best pricing

The players of our market GNEP are producers, consumers, and the transport operator
(TO).We start by discussing the producers (located at the nodes u ∈ V ) that maximize
their profit by solving the problem

max
su

πusu − cop,u(su) (3a)

s.t. 0 ≤ su for all u ∈ V . [γ −
u ] (3b)

Here, πu are exogenously given prices, which reflects the economic setting of perfect
competition in which all players act as price takers. Dual variables are always denoted
in brackets after the corresponding primal constraint.

The consumers (also located at nodes u ∈ V ) maximize their benefit by solving

max
du

∫ du

0
pu(x) dx − πudu . (4a)

Here, we assume that demand is always positive at all nodes u ∈ V without explicitly
stating it as a constraint. This is an assumption that is often made in comparable
equilibrium models—see, e.g., Gabriel et al. (2012)—and it is also not too restrictive
in practice since non-demanding consumers can be excluded from the model.

Finally, we state the TO’s model:

max
(qa ,Ka)a∈A

∑
a=(u,v)∈A

(πv − πu)qa −
∑
a∈A

cop,a(qa) −
∑
a∈A

cinv,a(Ka − K−
a ) (5a)

s.t. − Ka ≤ qa ≤ Ka for all a ∈ A, [β±
a ] (5b)

K−
a ≤ Ka for all a ∈ A. [δ−

a ] (5c)

The goal of the TO is to transport energy from low- to high-price areas and the TO
thus maximizes the profit obtained by these price differences minus the transport and
capacity investment costs. Constraint (5b) restricts the flow on arcs by arc capacities.
Moreover, we impose lower bounds on the capacity in Constraint (5c).
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Finally, all players consider their shared constraint

∑
a∈δin(u)

qa −
∑

a∈δout(u)

qa − du + su = 0 for all u ∈ V , (6)

which models market clearing, i.e., energy flow balance at every node in the network.
This clearing constraint leads to the fact that variables of other players are part of

every player’s constraint set. Thus, the described setting is not a game but a generalized
game in which we search for generalized Nash equilibria. For these GNEPs it is well-
known that multiple equilibria exist (see, e.g., the survey by Facchinei and Kanzow
2007 or Facchinei et al. 2007), which means that we also obtain non-unique nodal
prices that clear the market—an undesired situation. This is why one typically chooses
a specific GNEP solution that is also a so-called variational equilibrium; see Harker
(1991). Note that the shared constraints lead to the situation in which we have a single
primal constraint at every node for which every player obtains a separate dual variable.
In our convex setting, the variational equilibrium is then obtained by setting all these
dual variables for the same primal constraint to the same value; see Harker (1991).
Moreover, this specific variational GNEP solution can be obtained by solving theMCP
that contains all Karush–Kuhn–Tucker (KKT) conditions for all players problems
without the shared constraint and by adding this shared constraint afterward. This
MCP is given by dual and primal feasibility,

−c′
op,u(su) + αu + γ −

u = 0 for all u ∈ V , (7a)

pu(du) − αu = 0 for all u ∈ V , (7b)

−c′
op,a(qa) + αv − αu + β−

a − β+
a = 0 for all a = (u, v) ∈ A, (7c)

−c′
inv,a(Ka − K−

a ) + β+
a + β−

a + δ−
a = 0 for all a ∈ A, (7d)

su ≥ 0 for all u ∈ V , (7e)

−Ka ≤ qa ≤ Ka for all a ∈ A, (7f)

K−
a ≤ Ka for all a ∈ A, (7g)∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa − du + su = 0 for all u ∈ V , (7h)

and by the respective KKT complementarity constraints involving the non-negative
dual variables for the corresponding inequality constraints.

Lastly, thisMCPcanbe shown to be equivalent to thewelfaremaximization problem

max
d,s,K ,q

f (d, s, K , q) (8a)

s.t.
∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa − du + su = 0 for all u ∈ V , [αu] (8b)

− Ka ≤ qa ≤ Ka for all a ∈ A, [β±
a ] (8c)

0 ≤ su for all u ∈ V , [γ −
u ] (8d)
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K−
a ≤ Ka for all a ∈ A, [δ−

a ] (8e)

where corresponding dual variables are again denoted in brackets andwhere the objec-
tive function is defined as

f (d, s, K , q) :=
∑
u∈V

∫ du

0
pu(x) dx −

∑
u∈V

cop,u(su)

−
∑
a∈A

cinv,a(Ka − K−
a ) −

∑
a∈A

cop,a(qa).

The lattermodels total social welfare that is defined as the difference of gross consumer
surplus (first sum) and total costs of suppliers (second sum) and the TO (last two sums).
The proof is easily obtained by comparing the KKT conditions of (8) with theMCP (7)
and by identifying the dual variables αu of the nodal balance constraints (8b) with the
exogenously given prices πu of the GNEP.

Note that all optimization problems considered so far are concave maximization
problems over polyhedral feasible sets and that, thus, all KKT conditions are both
necessary and sufficient. Due to the polyhedral feasible sets, no additional constraint
qualification is required.

In what follows, we study the variational GNEP solutions by analyzing the welfare
maximization problem or the equivalent MCP. First, we characterize the local market,
i.e., the nodal prices αu at each node u in the network.

Lemma 1 The local price at node u ∈ V is given by

αu = pu(du) ≤ c′
op,u(su).

If node u has active production, i.e., su > 0, then equality holds and prices are strictly
positive:

pu(du) = c′
op,u(su) > 0 for all u ∈ V with su > 0, (9)

i.e., prices at nodes equal marginal costs of supply.

Proof The relations between p(du) and c′
op,u(su) follow directly from Conditions (7b)

and (7a). Our standard assumptions entail c′
op,u(su) > 0. ��

Since c′
inv,a(Ka − K−

a ) > 0, we also have

β−
a > 0, β+

a > 0, or δ−
a > 0 for all a ∈ A,

which readily implies (by KKT complementarity)

Ka = max
{
K−
a , |qa |

}
for all a ∈ A.
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Thus, we either do not need to expand capacity or one of the flow bounds is active.
In other words, capacity investment is realized as small as possible and as large as
necessary in order to maximize welfare.

Next, we prove that the flow direction on arc a = (u, v) ∈ A can be determined
by the price difference between node u and v and that the absolute value of the price
difference equals the sum of marginal transportation and capacity investment costs
of the connecting arc. This is a result that can also be found in the literature; see,
e.g., Cremer and Laffont (2002) for the same result in the context of a market power
analysis on a two-node gas network.

Theorem 1 Let a = (u, v) ∈ A with |qa | > K−
a . Then

sgn(pv(dv) − pu(du)) = sgn(qa)

and

|pv(dv) − pu(du)| = c′
inv,a(Ka − K−

a ) + |c′
op,a(qa)|. (10)

Proof The last two dual feasibility Conditions (7c) and (7d) yield

c′
inv,a(Ka − K−

a ) + c′
op,a(qa) = αv − αu + 2β−

a for all a = (u, v) ∈ A,

c′
inv,a(Ka − K−

a ) − c′
op,a(qa) = αu − αv + 2β+

a for all a = (u, v) ∈ A.

If qa > 0, then qa = Ka and hence the first equation together with (7b) yields the
claim. The case qa < 0 follows analogously from the second equation. ��

We remark that the shadow price β±
a of capacity Ka equals marginal costs of

capacity; see Condition (7d).

3.2 Second-best pricing

Since it will often be the case thatModel (8) leads to deficits for the TO, it is reasonable
to study an extension of this model, in which we add the break-even constraint

∑
u∈V

pu(du)du −
∑
u∈V

c′op,u(su)su −
∑
a∈A

cinv,a(Ka − K−
a ) −

∑
a∈A

cop,a(qa) ≥ 0, (11)

modeling that the TO’s expenses can be covered. The first termof the constraintmodels
the price that the consumers pay. From this we subtract the revenue of the producers
(second term). The difference between these two terms must be large enough to cover
the cost of the TO, namely investments in arcs (third term) and the costs of operating
the network (fourth term). Revenue constraints like (11) are often discussed in the
literature; see, e.g., Gabriel et al. (2013) and Ruiz et al. (2012), where the authors
discuss similar constraints that ensure the non-negativity of the profits of the producers
in their model. Similar to the cited papers, the prices obtained due to Constraint (11)
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guarantee that TO is willing to “remain in the market” because (11) prevents that the
TO incurs a loss.

Revenue constraints like (11) are typically complicated to be implemented in prac-
tice because it is not entirely clear who decides on the investment and operating costs
for the network. From a theoretical point of view, these costs in (11) are known since
we consider a perfectly competitive market with complete information. In this setting,
every agent uses true costs at the market. From a practical point of view, however, the
situation is more complicated because the exact costs are not exactly known. However,
estimates for, e.g., the costs of network expansion are often available in practice. As
an example, the costs for the planned network expansion of the German electricity
network are given in German TSOs (2014, 2017). To illustrate the availability of cost
data for the German electricity sector we refer to Appendix A of the recent paper
Ambrosius et al. (2018), where many sources of cost data are given.

If Constraint (11) is associated with the scalar dual variable η ≥ 0, the dual feasi-
bility conditions read

(1 + η)pu(du) − αu + ηp′
u(du)du = 0 for all u ∈ V , (12a)

−(1 + η)c′
op,u(su) + αu + γ −

u − ηc′′
op,u(su)su = 0 for all u ∈ V , (12b)

−(1 + η)c′
op,a(qa) + αv − αu − β+

a + β−
a = 0 for all a = (u, v) ∈ A, (12c)

−(1 + η)c′
inv,a(Ka − K−

a ) + β+
a + β−

a + δ−
a = 0 for all a ∈ A. (12d)

Note that Constraint (11)might be nonlinear. Thus, additional constraint qualifications
need to hold so that the KKT conditions again can be used. We now consider the cases
in which the break-even constraint is binding or not. If the constraint is not binding,
KKT complementarity yields η = 0 and the first-order conditions (12) equal the dual
conditions of the problem without break-even constraint in (7). The case in which the
break-even constraint is binding is more interesting. Adding (12a) and (12b) yields

pu(du) − c′
op,u(su) = η

1 + η

(
c′
op,u(su)

Es
u

− pu(du)

Ed
u

)
− γ −

u

1 + η
for all u ∈ V , (13)

instead of pu(du) − c′
op,u(su) = −γ −

u ; see (9). Here,

Es
u := c′

op,u(su)

c′′
op,u(su)su

, Ed
u := pu(du)

p′
u(du)du

are the corresponding elasticities of supply and demand. Note that Es
u is well-defined

for su > 0 because cop,u is assumed to be strongly convex. The results collected above
lead to the following theorem, which is again a direct generalization of the results for
two-node networks in Cremer and Laffont (2002).

Theorem 2 Let a = (u, v) ∈ A be an arc with |qa | > K−
a . Then

|pv(dv) − pu(du)| = c′
inv,a(Ka − K−

a ) + |c′
op,a(qa)|
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+ sgn(qa)
η

1 + η

(
pu(du)

Ed
u

− pv(dv)

Ed
v

)
.

Proof Subtract (12a) for adjacent nodes u, v and replace the resulting difference
αv − αu (if qa > 0) or αu − αv (if qa < 0) using (12c). Reordering then yields the
result. ��
Thus, second-best price differences differ from their first-best counterparts (10)
by inverse elasticity terms, which is expected from the classical Ramsey pricing
rule (Ramsey 1927). Here, the economic assumption that the TO is regulated, but needs
to cover its costs, is key: Without regulation, the TO would act as a monopolist—but
since we assume that the TO is regulated, the prices are raised only by the amount
that is needed to recover the costs. As in the classical Ramsey pricing rule, the price
difference depends on inverse elasticities. That is, the more elastic the demand, the
less markup is charged. Finally, (12d) yields

c′
inv,a(Ka − K−

a ) = β+
a + β−

a + δ−
a

1 + η

instead of c′
inv,a(Ka − K−

a ) = β+
a + β−

a + δ−
a ; see Condition (7d).

To sumup, all observedproperties of the pricing in this sectionhave a local character,
i.e., they only depend on a single node or on a single arc and its adjacent nodes.

4 Pricing with potential-based network flowmodels

In this section we extend the models of the previous section by node potentials and
possibly nonlinear constraints that couple potentials at nodes with flows on arcs. The
first—and very important—difference is that the equivalence between the variational
solutions of the GNEP and welfare maximal solutions does not hold in general in
this setting. The reason is that the TO’s model now contains nonconvex constraints
and, thus, the KKT conditions are not sufficient anymore. Despite this problem, we
analyze a potential-based extension of Model (8) in this section in order to shed light
on the differences of the pricing mechanisms that are outcome of the corresponding
welfare maximization problems. A detailed discussion of the market implications
of the physical nonlinearities and the resulting differences between welfare optimal
solutions and market equilibria can be found, e.g., in Grimm et al. (2019a) for the case
of gas networks.

The main differences between the models of Sect. 3 and their potential-based coun-
terparts used here are discussed in Sect. 4.1, where we start with the potential-based
first-best case. In Sect. 4.2 we then also discuss second-best pricing. The case without
transportation costs on arcs is discussed later in Sect. 5.2.

4.1 First-best pricing

We now consider the problem
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max
d,s,K ,q,�

f (d, s, K , q) (14a)

s.t.
∑

a∈δin(u)

qa −
∑

a∈δout(u)

qa − du + su = 0 for all u ∈ V , [αu] (14b)

�v − �u + Wa(Ka) f (qa) = 0 for all a = (u, v) ∈ A, [εa] (14c)

�−
u ≤ �u ≤ �+

u for all u ∈ V , [ζ±
u ] (14d)

K−
a ≤ Ka for all a ∈ A, [δ−

a ] (14e)

0 ≤ su for all u ∈ V , [γ −
u ] (14f)

where K−
a > 0 for all a ∈ A in order to avoid a possible division by zero in Wa(Ka);

see Equation (2). Let us briefly explain this assumption using the example of gas
networks, where capacity stands for pipe diameters; see Sect. 2. Constraint (14e) then
means that we do not build completely new pipes but extend the capacity of already
existing ones, where these existing pipes, obviously, need to have a non-zero diameter.
Moreover, we assume that a constraint qualification like LICQ or MFCQ holds such
that we can reasonably use KKT conditions.

In addition to linear flow models, we now have (possibly) nonlinear potential loss
constraints (14c) that couple potentials on nodes with flows on arcs. Furthermore, we
restrict node potentials by simple bounds (14d). This is common sense in practice
since node potentials are often restricted due to technical issues. For instance, gas
pressures at adjacent nodes u, v are typically restricted by the maximal pressure under
which the connecting pipe a = (u, v) can be operated. The potential loss constraints
together with the bounds on the node potentials yield implicit bounds for the flows
on arcs. This is the reason why we do not explicitly impose bounds on arc flows in
this section. The main extension variable is the arc capacity Ka that determines the
potential loss factor Wa(Ka).

Before we discuss the first-order conditions of Problem (14) let us briefly discuss
the meaning of the potential loss constraint (14c) in more detail. One way of inter-
preting these constraints is that they ensure that there cannot be any cycle flows in
a potential-based network model. This is well-known for, e.g., lossless DC power
flows in electricity networks or Weymouth-type pressure loss models in gas transport.
On radial, i.e., tree-structured, transport networks, the potentials can be ignored and
computed ex post for the model under consideration. For a more detailed discussion
of this aspect see Krebs et al. (2018) for DC power flow networks and Grimm et al.
(2019a) for gas transport models. As a consequence, computing flows on radial net-
works is easy (see, e.g., Lemma 2.3 in Robinius et al. 2019) whereas the computation
of potential-based flows on meshed networks is much harder and typically requires to
solve a system of nonlinear equations.

We now turn to the analysis of first-order conditions. Since the problems in this
section are nonconvex, first-order conditions are only necessary. This has also been
discussed in the light of the underlying GNEP at the very beginning of this section.
Nevertheless, the KKT conditions hold at global optimal solutions. Dual feasibility
conditions read
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pu(du) − αu = 0 for all u ∈ V , (15a)

−c′
op,u(su) + αu + γ −

u = 0 for all u ∈ V , (15b)

−c′
inv,a(Ka − K−

a ) + εaW
′
a(Ka) f (qa) + δ−

a = 0 for all a ∈ A, (15c)

−c′
op,a(qa) + αv − αu + εaWa(Ka) f

′(qa) = 0 for all a = (u, v) ∈ A, (15d)∑
a∈δin(u)

εa −
∑

a∈δout(u)

εa + ζ−
u − ζ+

u = 0 for all u ∈ V . (15e)

Here, we can already observe one of the major differences between potential-free and
potential-based flow models. The dual feasibility conditions of the KKT conditions
of the former models only contain equations that depend on a single node u ∈ V or
on a single arc a = (u, v) ∈ A. In the setting considered in this section, the dual
condition (15e) connects node quantities with all arcs connected to this node. This
is exactly the point where the local character of the pricing results for the potential-
free model gets lost. For gas networks, this global behavior has also been reported
in Midthun et al. (2009). Note further that these dual conditions corresponding to
primal potentials again yield a dual flow problem with right-hand sides ζ+

u − ζ−
u . In

case of non-binding potential bounds, i.e., the case in which the newly introduced
nonlinearities do not further restrict feasibility, this dual flow problem is a circulation.

In addition, the first four KKT conditions (15a)–(15d) not only relate the demand
and cost quantities pu(du), c′

op,u(su), c
′
inv,a(Ka −K−

a ), and c′
op,a(qa) to dual variables

as it is was the case in (7) but also depend on the primal flows qa . We discuss the
implication of this fact later on in this section.

As in the linear case, the first two Conditions (15a) and (15b) imply the price
equilibrium

pu(du) = c′
op,u(su) for all u ∈ V with su > 0 (16)

as well as αu > 0 for all u ∈ V with su > 0. Thus, the local relation between price and
marginal cost of production is the same as in the potential-free case; see Lemma 1.
Moreover, from (15d) we know that

pv(dv) − pu(du) = c′
op,a(qa) − εaWa(Ka) f

′(qa) for all a = (u, v) ∈ A. (17)

Theorem 3 Let a = (u, v) ∈ A. If K−
a < Ka and qa �= 0, then

εa = 1

W ′
a(Ka) f (qa)

c′
inv,a(Ka − K−

a )

and

pv(dv) − pu(du) = c′
op,a(qa) − Wa(Ka) f ′(qa)

W ′
a(Ka) f (qa)

c′
inv,a(Ka − K−

a ).

Note that the assumption qa �= 0 implies f (qa) �= 0 so that division byW ′
a(Ka) f (qa)

is well-defined. From the latter theoremwe can deduce that if the lower capacity bound
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is not binding and the flow does not vanish, the direction of energy flow is determined
by the sign of the price difference.

Note further that the pricing rule for potential-based flows given in Theorem 3 has,
in contrast to the pricing rule (10) for potential-free models, an additional scaling of
the capacity investment costs. This scaling is given by the nonlinear factor

Wa(Ka) f ′(qa)
W ′

a(Ka) f (qa)
,

which depends on the primal flow qa and which can thus be interpreted as the worthi-
ness of capacity expansion relative to the given flow situation. The price differences
of Theorem 3 have the property that they are sufficient to induce the investment
in capacity; see last term of the right-hand side. In the potential-free models, this
term is independent of a specific flow situation, whereas the potential-based situation
explicitly scales this investment term in dependence of the flow. This means, that an
investment decision upon potential-based pricing better should use multiple-scenario
setups in order to avoid curious investments that rely on a specific, but maybe unusual,
flow situation.

As the previous discussion shows, the dependence of the pricing rule of the last the-
orem for the potential-based case more strongly depends on the flows in the network
then the analogous rule (10) for the potential-free case. This makes cost allocation
for using the transport network much more complicated. Consider, e.g., linear invest-
ment on transport costs for the potential-free case. In this setting, the price difference
rule (10) is independent of the actual flow situation. For potential-based network flow
models, this is not possible—except for the case of radial networks, where networks
flows can be easily computed; see also our discussion of radial and meshed networks
at the beginning of this section. For more details on cost allocation mechanisms in
potential-based power networks we refer to Galiana et al. (2003) and Gil et al. (2005)
and the references therein.

Corollary 1 For every arc a ∈ A at least one of the following statements holds:

(1) qa = 0,
(2) Ka = K−

a ,
(3) sgn(pv(dv) − pu(du)) = − sgn(εa) = sgn(qa).

Proof The claim directly follows from Condition (15c), Theorem 3, and the assump-
tions on Wa, f ′, c′

inv,a , and c′
op,a . ��

The latter corollary states that, irrespective of the extension of the model towards
nonlinear potential-based flow constraints, flow directions are still determined by price
differences as it was the case for potential-free models; see Theorem 1, where the
analogue conclusion is drawn. However, the more accurate physics model determines
the feasibility of the flows, especially in cyclic networks, and prices thus need to be
different compared the potential-free models.
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The main effect observed in this section so far, which is different to the potential-
free case, is the following: The primal economic data is not only connected with
shadow prices, i.e., dual variables, but is also strongly related to primal flows. These
primal flows are subject to potential gradients that are coupled throughout the entire
network. Thus, pricing cannot be done locally in the network but changes in potentials
or flows in some part of the network implicitly change the pricing everywhere else
in the network as well. This effects will also be clearly visible in the case study of
Sect. 6.

4.2 Second-best pricing

As for the potential-free models, we also discuss second-best pricing. To this end, we
extendModel (14) by the corresponding break-even constraint (11), which is equipped
with the scalar dual variable η ≥ 0. Furthermore, we still assume that a sufficiently
strong constraint qualification holds. The first-order conditions then read

(1 + η)pu(du) − αu + ηp′
u(du)du = 0 for all u ∈ V ,

−(1 + η)c′
op,u(su) + αu + γ −

u − ηc′′
op,u(su)su = 0 for all u ∈ V ,

−(1 + η)c′
inv,a(Ka − K−

a ) + εaW
′
a(Ka) f (qa) + δ−

a = 0 for all a ∈ A,

−(1 + η)c′
op,a(qa) + αv − αu + εaWa(Ka) f

′(qa) = 0 for all a = (u, v) ∈ A,∑
a=(v,u)∈A

εa −
∑

a=(u,v)∈A

εa + ζ−
u − ζ+

u = 0 for all u ∈ V .

Obviously, we obtain Conditions (15) if the break-even constraint is not binding.
Hence, we consider the binding case. In analogy to Sect. 3.2 we get

pu(du) − c′
op,u(su) = η

1 + η

(
c′
op,u(su)

Es
u

− pu(du)

Ed
u

)
− γ −

u

1 + η
for all u ∈ V .

Again with the same technique as in Sect. 3.2 we obtain the price difference

pv(dv) − pu(du) = c′
op,a(qa) − εa

1 + η
Wa(Ka) f

′(qa) + η

1 + η

(
pu(du)

Ed
u

− pv(dv)

Ed
v

)

instead of (17). Moreover, it can be easily seen that Corollary 1 still holds.
Comparing the results with the linear case, we observe similarities. The additional

inverse elasticity terms equal the corresponding terms in the potential-free models and
the contribution of the potentials is scaled by a factor of 1/(1 + η). This underlines
that the main difference between the linear and nonlinear case are the additional terms
that are introduced by node potentials. These again scale the terms in dependence of
the specific flow situation; see also the discussion after Theorem 3.
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5 The case without transportation costs

In this section we address the specific case without transportation costs on arcs. This
case frequently appears in practice in subnetworks of the considered general networks.
For instance, in gas networks, transportation costs mainly translate to the operational
costs of compressor stationswhereas gas flow through pipelines itself is costless. Since
pipes typically outnumber all other network elements in gas transport networks, there
are large subnetworks without transportation costs. A concept that is often used in this
context is the one of price zones; see, e.g., the recent papers Grimm et al. (2016, 2017,
2019b), Kleinert and Schmidt (2019) and Krebs et al. (2018), as well as the references
therein. This concept refers to connected subnetworks where prices are equal, which is
obviously only possible in the absence of transportation costs on arcs. In this section,
we formally derive these price zones from first-order conditions. For the potential-
free case, we give a proof of existence of price zones that are given by flow-saturated
arcs of the network. Moreover, for the potential-based case, we show that the case of
non-binding node potential bounds leads to a single price zone covering the whole
network.

5.1 The potential-free case

The main idea of this section is to use a different model formulation than the one
used in the rest of this article; namely a variant based on the well-known theorems
of Gale and Hoffman that give necessary and sufficient conditions when a network
admits a feasible flow; see Schrijver (2003, Chapter 11). To simplify notation, we set
δ(U ) = {a = (u, v) : u ∈ U , v /∈ U } ∪ {a = (u, v) : u /∈ U , v ∈ U } for every subset
U ⊆ V .

max
d,s,K

g(d, s, K ) (18a)

s.t. −
∑

a∈δ(U )

Ka ≤
∑
u∈U

su −
∑
u∈U

du ≤
∑

a∈δ(U )

Ka for all U ⊆ V , [α±
U ] (18b)

K−
a ≤ Ka for all a ∈ A, [δ−

a ] (18c)

0 ≤ su for all u ∈ V , [γ −
u ] (18d)∑

u∈V
su −

∑
u∈V

du = 0, [λ] (18e)

where the objective is defined as

g(d, s, K ) :=
∑
u∈V

∫ du

0
pu(x) dx −

∑
u∈V

cop,u(su) −
∑
a∈A

cinv,a(Ka − K−
a ),

i.e., g equals f except for themissing transportation cost terms. It is known that we can
restrict ourselves to those setsU that induce connected subgraphs of G; see Schrijver
(2003, Chapter 11) again. The dual equations in this case are
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pu(du) −
∑

U :u∈U
α−
U +

∑
U :u∈U

α+
U − λ = 0 for all u ∈ V ,

−c′
op,u(su) +

∑
U :u∈U

α−
U −

∑
U :u∈U

α+
U + γ −

u + λ = 0 for all u ∈ V ,

−c′
inv,a(Ka − K−

a ) +
∑

U :a∈δ(U )

α−
U +

∑
U :a∈δ(U )

α+
U + δ−

a = 0 for all A ∈ A.

If we add the first two dual conditions, we directly obtain that for all nodes with
su > 0 it holds that pu(du) = c′

op,u(su). Furthermore, nodal prices can now be
interpreted as follows: Every node set U that induces a connected subgraph, which
we will refer to as a zone, has a price that is nonzero if and only if one of the capacity
bounds for the induced cut is binding. A price at a node is simply the sum of all the
prices of all zones that the node is part of. Especially, we can see that in the generic
case nodes with the same price belong to a connected component of the graph. This
shows that in this setting price zones can be obtained naturally from the first-order
conditions.

For this we use the following definition of price zone.

Definition 1 Given a solution z of Problem (18), we say that a partition Z = {Zi }Ii=1
partitions the node set V into price zones, if for all Z ∈ Z holds that for all nodes
u ∈ Z the prices pu(du) are equal. We also write Z(z) to emphasize the dependence
on solution z.

The main idea is now to recover the price zones from the active constraints of the
alternative formulation. For this we define the following partition; see also Krebs and
Schmidt (2018) where the same concept is also used in the case of transport costs.

Definition 2 Given a solution z of Problem (8), we say that the partition Z = {Zi }Ii=1
of the node set V is the flow-induced partition, if it is obtained the following way:
Each Zi is a connected component of the graph G̃(z) = (V , E\E sat), where

Asat :=
⎧⎨
⎩a ∈ A : ∃U ⊆ V . a ∈ δ(U ) and

∑
a∈δ(U )

Ka =
∣∣∣∣∣
∑
u∈U

su −
∑
u∈U

du

∣∣∣∣∣
⎫⎬
⎭ .

With these concepts we are able to state an equivalent version of Problem (18).

Theorem 4 Let z∗ := (d∗, s∗, K ∗) be an optimal solution of Problem (18) and Z the
flow-induced partition. Then,

g(z∗) = max
d,s

g(d, s, K ∗) (19a)

s.t.
∑
u∈Z

du −
∑
u∈Z

su = K̂Z for all Z ∈ Z, (19b)

0 ≤ su for all u ∈ V , (19c)

where K̂Z = ∑
a∈δ(Z) K

∗
a is the total in- or outflow of zone Z. This implies that Z is

a partition into price zones.
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Proof Let z′ = (s′, d ′, K ∗) be an optimal solution of Problem (19). As z∗ is feasible
for this problem, it is clear that g(z∗) ≤ g(z′).

Now, for every U ⊆ V define τU ∈ [0, 1] as follows: Choose τU maximal such
that zτU := (1− τU )z∗ + τU z′ is feasible for the Constraint (18b) corresponding toU .

We observe that τU > 0 for all U ⊆ V : This is clear if Constraint (18b) is not
satisfied with equality for z∗. In the case that the constraint is satisfied with equality
for z∗, we see that U can be written as a union of zones. Hence, the constraint is
satisfied with equality for z′ as well. So, we can choose τU = 1 in this case.

Now set τ := minU⊆V τU . Then zτ := (1 − τ)z∗ + τ z′ is feasible for Prob-
lem (18). Assume now, that g(z∗) < g(z′), then, as τ > 0 holds, g(zτ ) > g(z∗)which
contradicts the optimality of z∗ for Problem (18). ��

5.2 The potential-based case

In analogy to the last section we now analyze the case without transportation costs for
the potential-based model, i.e., we neglect the terms

∑
a∈A cop,a(qa) in the objective

function of (14).

Proposition 1 If no transportation costs are present, then there exists a matrix R such
that ε = Rζ , where ζ := ζ+ − ζ−.

Not surprisingly, the proof of Proposition 1 is along the lines of the classical proof
of the computations of currents and voltages fromKirchhoff’s laws; see, e.g., Bollobás
(1998, Section II.3, esp. Theorem 11).

Proof of Proposition 1 LetM be the node-arc-incidence-matrix ofG.Written inmatrix
form, Condition (15e) then readsMε = ζ .We arbitrarily choose a node r ∈ V , remove
the row corresponding to r and obtain M̃ε = ζ̃ . If G is connected, then M̃ has full row
rank. Let B be the set of arcs of a spanning tree in the graph and N be its complement.
It is known that the square matrix M̃B , where we pick all columns with arcs in B, is
invertible. If we split M̃ using B and N the system reads

M̃BεB + M̃N εN = ζ̃ ⇐⇒ εB = −M̃−1
B M̃N εN + M̃−1

B ζ̃ .

This means, we can compute εB if we know εN . We define

C :=
(−M̃−1

B M̃N

I

)

and see that

CεN = ε −
(
M̃−1

B
0

)
ζ̃ (20)

holds. Next, we define P := diag(Wa(Ka) f ′(qa)). Since all diagonal entries are
positive, P is invertible. As C is the fundamental cycle matrix of G, Condition (15d)
can also be rewritten in matrix form and we obtain
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C�P

(
CεN +

(
M̃−1

B
0

)
ζ̃

)
= 0.

Rearranging the terms then finally yields

C�PCεN = −C�P

(
M̃−1

B
0

)
ζ̃ .

We observe that the matrix C�PC is a square matrix of full rank as P is invertible
and C has full column rank. Hence we can solve for εN and obtain

εN = −
(
C�PC

)−1
C�P

(
M̃−1

B
0

)
ζ̃ .

Togetherwith (20)we obtain amatrix R̃ such that ε = R̃ζ̃ . After adding a zero-column,
R is constructed as required. ��

From Proposition 1 we can directly draw the following conclusions for the case
that no potential bounds are binding.

Theorem 5 If no transportation costs are present and no potential bound is binding,
i.e., �−

u < � < �+
u for all u ∈ V , then

(1) pv(dv) = pu(du) for all u, v ∈ V ,
(2) Ka = K−

a for all a ∈ A.

Proof If no potential bound is active, ζ+ = ζ− = 0 holds. From Proposition 1 it then
follows ε = 0 as well. The first claim follows from setting ε = 0 in Condition (15d).
Then the claim holds for neighboring nodes. As G is connected the claim holds for
all pairs of nodes.

For the second claim we set ε = 0 in (15c) and obtain c′
inv,a(Ka − K−

a ) = δ−
a .

As c′
inv,a(Ka − K−

a ) > 0 is true by assumption, it follows that δ−
a > 0 holds. Then

Ka = K−
a follows from KKT complementarity. ��

The situation of binding potential bounds is much more difficult to analyze. The
matrix R is typically dense, i.e., almost all of its entries are nonzero. This means a
violation of a potential bound is not a local phenomenon, because a binding potential
bound has an impact of almost all other nodes and arcs of the network. Thus, we can no
longer talk of “a congested arc” as it is the case for potential-free energy flow models.
In contrast, congestion is a global phenomenon. A case study illustrating these effects
is given in Sect. 6.

Moreover, a result analogous to Theorem 5 does not hold for the case of trans-
portation costs, e.g., price equality is then replaced by the price difference given in
Theorem 3.
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3

p(d) = 70 − 0.05d
cop (s) = 0 .4s

2
p(d) = 1 − 0.75d
cop (s) = 0 .05s1

p(d) = 4 − 0.75d
cop (s) = 0 .015s

5
p(d) = 75 − 0.1d
cop (s) = 0 .5s6

p(d) = 80 − 0.1d
cop (s) = 0 .6s

4

p(d) = 5 − 1.125d
cop (s) = 0 .075s

cinv (K ) = 0 .5K
cop (q) = 0 .005|q|

cinv (K ) = 0 .3K
cop (q) = 0 .005|q|

cinv (K ) = 0 .35K
cop (q) = 0 .005|q|

cinv (K ) = 1 K
cop (q) = 0 .01|q|

cinv (K ) = 0 .9K
cop (q) = 0 .01|q|

cinv (K ) = 0 .3K
cop (q) = 0 .005|q|

cinv (K ) = 0 .35K
cop (q) = 0 .005|q|

cinv (K ) = 0 .4K
cop (q) = 0 .005|q|

Fig. 1 Demand as well as investment, supply, and transportation costs for the 6-node network

6 Case study

In this section we compare the outcomes of the potential-free and potential-based
first-best model on a cyclic six-node network. The topology of the network is taken
from Chao and Peck (1998). We use the network topology given in the publication and
modify the data of demand as well of supply, investment, and transportation costs as
given in Fig. 1. Demand functions are modeled with affine-linear functions whereas
investment, supply, and transportation costs are assumed to be (at least piecewise)
linear. As already discussed in Sect. 4, the effects of potential loss constraints are only
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important for non-radial networks, which is why we choose the network in Fig. 1 that
contains three fundamental cycles.

Before we start discussing the differences of the solutions to both models we men-
tion that we are aware of the problem of calibrating the models so that they are
comparable in a quantitative way. For instance, consider the meaning of “capacity”
in both models: In the potential-free model, a unit of capacity expansion directly
translates to one more unit of flow that can be sent through the corresponding arc. In
contrast, capacities in the potential-based model correspond to, e.g., pipe diameters.
Increased diameters also lead to increased amounts of flow that can be sent but there is
a nonlinear relationship between capacity and flow instead of a linear one-to-one cor-
respondence. Regarding the calibration of the model given in Fig. 1, we also want to
note that it is not our purpose the construct a realistic instance but to set up an easy
parameterization that allows to qualitatively compare the effects of potential-based
physics models on pricing.

For the potential-free case, we solve Model (8) with lower capacity bounds K−
a =

0.1 for all arcs a ∈ A. The potential-based first-best model (14) is instantiated in order
to model a gas transport network. Thus, Wa is defined as in Equation (2), f (qa) =
|qa |qa , and capacities correspond to pipe diameters (again with lower bound 0.1).1

Note that this model is nonlinear and nonconvex.
Both models are implemented in GAMS v24.3.3 (seeMcCarl 2009) and solved with

BARON v14.0.3; see Tawarmalani and Sahinidis (2005). In all of our computations,
BARON computes global optimal solutions. The GAMS source code of both models
are publicly available and can be downloaded.2

Figure 2 shows the results of the linear model. The main demand nodes (downward
triangles) are 3, 5, and 6 and the main suppliers (upward triangles) are nodes 1 and 4.
Note that the main demand nodes do not supply whereas the main suppliers also have
a small demand. Node 1 provides gas for node 3, node 2 is approximately autarkic and
node 4 supplies node 5 and 6. Prices at node 1, 2, and 4 equal marginal costs of local
supply since local supply is nonzero; see (9). Thus, differences between prices and
marginal costs only exist at nodes without local supply, i.e., at nodes that are provided
from other suppliers. These differences are determined by the dual variables γ − of the
lower supply bounds; see Lemma 1. Transport and investment costs are only caused by
node pairs with flow that is induced by incentives due to demand and supply. More-
over, flow follows price differences; see Theorem 1. It can be also seen that larger
price differences are caused by larger amounts of flow. More specifically, arcs that
are not on a path from a main supply node to a main demand node do not cause any
costs and, thus, costs can be distributed canonically between flow-inducing pairs of
supply and demand nodes. For example, large transport and investment costs on the
arc (1, 3) are caused by supply at node 1 that is used to serve the demand at node 3.
The same applies to the arcs (4, 6) and (4, 5). All other arcs are only used at a mini-
mum amount that is caused by the technical assumption of minimum capacities of 0.1.

1 Potentials correspond to squared gas pressures and the potential bounds are chosen such that gas pressure
is within 1 bar 70 bar. For the gas network model, all pipes have length L = 25 km and an inner roughness
of k = 0.05mm. Furthermore, the compressibility factor is set to 1, the constant mean temperature of gas
is 283.15K and the constant molar mass of gas is 18.05 kg kmol−1.
2 https://www.mso.math.fau.de/fileadmin/wima/data_members/schmidt/chao-peck.zip.
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3

d = 1393 .6, s = 0 , p = 0 .32

2
d = 1 .3
s = 1 .4
p = 0 .05

1
d = 5 .3
s = 1399 .0
p = 0 .015

5
d = 745 .7
s = 0
p = 0 .43

6
d = 795 .2
s = 0
p = 0 .48

4

d = 4 .4, s = 1545 , p = 0 .075

q = 0 .1
K = 0 .1

K = q = 1393 .5 K = q = 0 .1

K = q = 0 .1 K = q = 0 .1

K = q = 0 .1

K = q = 745 .7K = q = 795 .0

Fig. 2 Results for the potential-free model. Arcs with large flows are printed in bold. Flow directions
are indicated by arrows, supply nodes by upward triangles, demand nodes by downward triangles and
(approximately) autarkic nodes by circles

In summary, pricing of network access per node can be realized arc-wise considera-
tions, i.e., by rules that are local in the network. In summary, all theoretical results can
be seen in this case study.

The outcome of the potential-based model can be seen in Fig. 3. First, it turns out
that the demand situation is qualitatively the same as for the potential-free model.
We again have the main demand nodes 3, 5, and 6 (with no local supply as in the
linear case). However, the supply situation significantly changed. Node 4 does not
supply anymore yielding that node 1 is the only supplier. Node 2 is again, almost
autarkic. As a consequence, the flow situation—and thus transport costs, capacity
investments, and prices—significantly differs. The flow situation of the linear model
shows two disconnected flow graphs (induced by significant flow), which lead to
cheapest investment since capacity on arcs (1, 6) and (2, 5) are more expensive than
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3

d = 1399 .5, s = 0 , p = 0 .02, 1 bar

2

d = 1 .3
s = 0
p = 0 .02
54.9 bar

1

d = 5 .3
s = 2960
p = 0 .015
70 bar

5

d = 749 .7
s = 0
p = 0 .031
1.1 bar

6

d = 799 .7
s = 0
p = 0 .025
19.7 bar

4

d = 4 .4, s = 0 , p = 0 .038, 1 bar

q = 752 .2
K = 1 .1

q = 1397 .8
K = 1 .17

q = 1 .8
K = 0 .1

q = 804 .8
K = 0 .96

q = 749 .0
K = 1 .01

q = 0 .7
K = 0 .1

q = 0 .02
K = 0 .1

q = 4 .4
K = 0 .21

Fig. 3 Results for the potential-based model. Arcs with large flows are printed in bold. Flow directions
are indicated by arrows, supply nodes by upward triangles, demand nodes by downward triangles and
(approximately) autarkic nodes by circles

for all other arcs. However, these disconnected flows are not feasible for the potential-
based flow model (14). This can also be seen in the solution to (14); see Fig. 3. The
graph induced by gas flow now is connected, yielding a significant capacity expansion
at both arcs (1, 6) and (2, 5). Note further that the cheaper path (1, 6, 5) would not
be feasible if one does not have the additional flow path (1, 2, 5), too. This overall
flow situation with enforced north-south flow allows that node 1, which is the cheapest
supplier, provides all demand nodes with gas and the prices are always lower than in
the solution of the linear and potential-free model. Node 1 is also the only node at
which price equals marginal costs of local supply; see 16.We also see that the physical
flow is in line with price gradients as stated in Corollary 1 and price differences are
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proportional to the amount of flow as stated in Theorem 3. Moreover, one sees that the
potential-based flows lead to more homogeneously distributed prices throughout the
network: The maximum price ratio, i.e., maxu∈V pu/minu∈V pu , is 32 in the linear
case whereas the corresponding value is 2.5 for the potential-based model. Thus,
all nodes are affected by costs induced by only a few node pairs that would induce
flow in the linear model due to price differences. For instance, prices at node 2 and
4 are affected although both nodes are almost autarkic, which is the computational
realization of the effect that pricing does not have a local character for potential-based
energy flow models; see also the discussions in Sect. 4.1.

Finally, this exemplary comparison of different energy flow models show that the
outcomes of potential-free flow models significantly differ from their potential-based
counterparts. Themain difference in the discussed case study is that physical laws lead
to line expansion that then allows the cheapest supplier to serve all demands in the
network. In the potential-free case, the physical need for line expansion is not given,
yielding a stronger regional supply.

7 Conclusion

In this paper, we presented a generalization of classical pricing frameworks for energy
transport networks that uses potential-based physics models for the energy flow in the
network. For the potential-free case, we obtained the result that the properties of the
resulting pricing have a local character: Price differences are determined by the flow on
the arc that connects these two nodes and the actions of the producers and consumers at
the twonodes. This especially legitimates analyses of pricingmechanismsonpotential-
free networks that use very stylized networks like, e.g., two-node networks. In contrast,
we also showed that this is not the case for potential-based networks because node
potentials couple different regions of the network much stronger than it is the case
for the standard nodal flow balance constraints that are also part of the potential-
free models. This effect is particularly present in cyclic network structures, where
feasible flows are mainly determined by the newly introduced constraints that couple
node potentials with arc flows. Thus, significantly different pricing outcomes can be
observed and we additionally provided a case study on a cyclic network that illustrates
these differences.

There are many aspects of pricing in energy networks that we abstracted from.
For example, we did not consider market power, which is a very important aspect of
liberalized energy markets. We think that very interesting research questions can be
obtained by combining market power considerations with potential-based energy flow
models in networks, e.g., “Does potential-based physics models alleviate or enforce
market power?” or “How does the consideration of potential-based models change the
distribution of rents in imperfect markets?”.

Finally, a deeper understanding ofmultiple-scenario settings is required for the case
of potential-based flows since our theoretical results reveal that investment decisions
based on a single flow situation may be undesirable.
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